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We present a numerical test of a class of approximate boundary ccnditions at an artiticial 
boundary for the solution of time-dependent problems in semi-infinite spatial domains. The 
conditions are constructed by use of a general method developed by the author in another 
work. A problem modeling the transport and diffusion of soluble matter by a parallel flow is 
taken as the test case. We demonstrate the effectiveness of the method in obtaining accurate 
results on small computational domains. 1 1987 Academic Press. Inc 

1. INTR~OUCTI~N 

An outstanding problem in the numerical solution of the partial differential 
equations of continuum mechanics is the proper treatment of artificial boundaries. 
A particular case of this is the problem of boundary conditions at an outflow boun- 
dary in fluid mechanics. In this work we present a numerical test of a general 
procedure for the derivation of boundary conditions for linear time-dependent 
problems. 

Although many papers discussing boundary conditions for hyperbolic problems 
have appeared in the literature (see, e.g., Gustafsson and Kreiss [3] and Engquist 
and Majda [Z]), much less has been written about parabolic problems. Hagstrom 
and Keller [6] present a method for nonlinear reaction-diffusion equations on the 
line. In that case, careful treatment of the “outflow” boundary conditions was 
shown to be crucial if the dynamics of wave propagation were to be simulated 
correctly. 

In [4] the author has derived a class of asymptotic expansions for linear, time- 
dependent problems in cylindrical domains and used these expansions to construct 
a hierarchy of boundary conditions at an artificial boundary. Here, we apply this 
construction to the following problem: 

(a) $+~(y)g=D($+$), x, 230, y~(-1, l), 
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(c) $(x2 +1, r)=O, 

(d) lim u(x, y, t) =O, 
Y - x 

(e) 4-5 y, 0) = 0, 

(0 4.Y)30. (1.1) 

Problem (1.1) is a model of the transport and diffusion of a scalar contaminant 
by a parallel flow whose profile is a(y). For a theoretical and experimental dis- 
cussion which is somewhat relevant to our work, the reader is referred to 
Taylor [8]. 

Beyond the inherent interest in its solution, we believe that (1.1) provides an 
excellent model problem to test our method on. First, it is relatively simple, yet the 
exact conditions at outflow are too complicated to use. Hence, our asymptotic 
approach is needed. Second, the effect of decreasing D, so that the equation 
becomes nearly hyperbolic, can be examined. Third, it has at least superficial 
similarities to the Navier-Stokes equations, which are an important motivation for 
our research. 

In Sections 2 and 3 of this work the methods of 143 are applied to (1.1) to con- 
struct asymptotic expansions and boundary conditions. In Section 4 numerical 
results are given for a parabolic velocity profile. In particular, we assess the effects 
of the order of approximation to the boundary condition, the location of the 
artificial boundary and the value of the diffusion constant, D. 

2. ASYMPTOTIC EXPANSION OF THE NORMAL MODES 

Following [4] we seek a solution of (1.1) of the form: 

(a) 44 I’, t) = Cu,(x, Y, t), 

(b) u/(x, L’, t) = ?;I C,(P) Q/(x, Y, r-p) 4, 

(cl Q,(x, y, t) =A j-I% est+i”s)~y. Y,(y, s) ds. 

(2.1) 

This, in turn, leads to the eigenvalue problem, 

(a) syh s) + b0) YAY, s) = D( Y;‘(Y, s) + ~?Y,(Y, s)), ,vE(-1, I), 
(2.2) 

(b) Y;(+l,s)=O. 
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We are particularly concerned with the behavior of u for large values of x and t. 
This leads us to the study of (2.2) for small values of s. Solutions can be expressed 
as a power series in s whose terms can be determined in order: 

(a) Y,(Y,s)= Y~Y)+J~:(.Y)+ ..., 

(b) &(s)=E.y+sE.; +s*E.;+ . . . . 
(2.3) 

The leading order eigenvalueeeigenfunction pair, {iy, q}, is a solution of 

(a) D( Yy” + (1.:)2 Yy) - iya(t,) Yy = 0, YE:(--l,l), 

(b) v’=O, ,‘= 21. 
(2.4) 

Problem (2.4) can be solved numerically by a variety of methods (see, e.g., Keller 
[7]). As solutions of interest must be bounded as x -+ !x, we require that 

Re( Ly) 6 0. (2.5) 

Solutions of problems such as (2.4) have been used in the construction of 
asymptotic boundary conditions for steady problems (Gustafsson and Kreiss [3], 
Hagstrom and Keller [S], and Ache and Strikwerda [ 11). In this particular case 
the solution with the smallest decay rate (in x) can be easily written down. It is 

(a) 

(b) 

ii; = 0, 

c = constant = 1. 
(2.6) 

Formulas for YA, iti;, and 1.: are given in [4]. First, ;I; is determined by the 
orthogonality condition, 

I 1, (1 +%$z(J)}dy=O, (2.7) 

which implies 

The function Y;(u) is then a solution of: 

(a) DYA” = 1 + Lha(y), J’E(-1, 11, 

(b) Y,!,‘=O, y= kl, 

(c) J’-L, Y(gy)dy=O. 

(2.8) 

(2.9) 

Condition (2.9~) is necessary to make the solution unique. 
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Finally, 3,: can be determined from another orthogonality condition 

which implies 

(2.11) 

For simple choices of a(y), analytic expressions for these quantities can be found. 
In particular, if we choose a parabolic profile: 

a(y) = (1 -Y2h (2.12) 

then 

(a) i.h= -2, 

(b) Y;(j)=&(l5~~~-30~*+7), (2.13) 

270 1 
(cl 1.;=8+350. 

An asymptotic expansion of Q,(x, y, t) for 1x1 9 1, jI%:x+ tl, can be calculated by 
the method of descents (see [4]). A necessary condition for its validity is that L:.’ 
be real and 

I.) d 0, 1.; > 0. (2.14) 

We then have 

(2.15) 

The leading term of the expansion in (2.15) is closely related to a solution of the 
diffusion equation. If we assume that 1: #O and take 

t 
z=x+--, 

4 
(2.;6) 

then (2.15 ) becomes 

(a) Q/(x, y, t) - eiYyF(z, t) e(y), 
(2.17) 

(b) F(z, +e:d’3=2/4”:‘}. (l/J-). 
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We see that F is an approximate solution of 

aF -1; a=I; -=-- 
at (2;~~ az2’ 

(2.18) 

Restating our results, we have found a basic solution of (1.1) which, far 
downstream, decays exponentially like a solution of the steady problem while trans- 
lating at a certain speed and satisfying the effective diffusion law, (2.18). Note that 
(2.14) the necessary condition for the validity of the asymptotic expansion, guaran- 
tees that the effective diffusion constant will be nonnegative. For the parabolic 
profile, a( ~1) = 1 -y2, this assumption is easily verified. We find that for I= 0 it is 
given by 

(2.19) 

This result was previously obtained by Taylor [S] using different methods and the 
value of D,, was tested experimentally. 

3. CONSTRUCTION OF THE BOUNDARY CONDITIONS 

An exact boundary condition at x = t is the relation between u and au/ax which, 
using (2.1 ), is implicitly given by 

(a) E(T, Y, t)= C g(7, J: t), 
/ j 

Re(i,) > 0 
(3.1) 

Assuming that 7 is large and that the most important contributions to the integral 
in (3.1) come from a neighborhood where Ii:7 + t -pi < 7, we use the expansions 
given above to approximate aQ,/ax. In transform space we have 

(3.2) 

where n,(s) is replaced by: 

/l,(s) = a: + 2; s + qs= + . . . (3.3) 

Noting that s corresponds to a/at and taking derivatives outside the integrand we 
have a hierarchy of boundary conditions of increasing accuracy: 
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(3.4) 

Conditions (3.4a), (3.4b) are useful, but it is easily seen that (3.4~) leads to an 
ill-posed problem. This can be remedied by the trick of using PadC approximants 
(see Engquist and Majda [2]). That is, we replace (3.4~) by 

(3.4c’) 

Higher order expansions could also be used. 
The boundary conditions for all modes u, could be included in a nonlocal con- 

dition on the channel cross-section [S]. However, given the exponential decay of 
the solutions, only the modes with the slowest decay are likely to be important. A 
one-mode condition is given by the application of (2.23) to u. Here we choose 1 so 
that E,T has the largest nonpositive real part. A two-mode condition can be 
calculated from the product of two one-mode conditions. For example, using (3.4~‘) 
for mode I = 0 and (3.4b) for I = 1 we have 

In the computations we describe, at most two modes are considered. 

4. NUMERICAL RESULTS 

We now describe the results of numerical experiments. In all cases the parabolic 
profile is taken for U(J)) and periodic inflow forcing functions u,(y, t) are used. The 
results we show are only for 

u,(y, t) = 1 - cos(( 1.06) nt), (4.1) 

but are representative of the others. Outflow boundary locations of z = 1, 3, 5 are 
used and compared with results of a computation on a long interval (r = 15). One- 
mode boundary conditions (3.4a), (3.4b), (3.4~‘) based on the most slowly decaying 
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mode are tested as is the two-mode condition (3.5). For this the quantities 2’: and if 
corresponding to the mode with the second slowest decay rate were computed: 

(a) i-o= -1.351551109973, 

(b) 3.; = -0.3146578471274. 
(4.2) 

The physical diffusion, D, is also varied. Results for D = 1 and 0.01 are given here. 
The equations are discretized by the following two-step implicit splitting scheme 

(I-kD+,D ,.)(I-kD+,D ,)u(.u,, .I’,, t+k) 

TIME 
FIGURE 1 
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where k is the time step and D +,-,, are standard spatial difference operators. The 
method is second order in space and time when used on uniform grids. 

The one-mode boundary conditions, which involve only first order x derivatives, 
were implemented using centered differences across, at most, two mesh lines in x 
and t. In what follows we abbreviate U(T, y,, t) by u:,,. Also, we use the symbols A x,, 
for averaging operators. That is: 

(a) A,ul.,=f(u:+,,,+~:,), 

(b) A+:..,= f(u:;” + u:,,). 
(4.4) 

x 
d 

3 
? 

E 4 
d ---I 

0.0 0.5 1.0 1.5 'd.0 a.5 3.0 3.5 4.0 4.5 6.0 5.5 6.0 6.5 7.0 7 

TIME 

FIGURE 2. 
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,I ; 

, , 

We then have: 

(a) D+,.u:=‘! -~.:A,.u:,;~ =O, 

(b) A,D+,-UC.,- ~~~A,A.I(:,,-~.~D+,A,.~:,,=O, (4.5) 

(c) A,D,,,:,,-2 D+,D+yu;,,-j&4,A,.u;,,+(i~$-$,)D+,A,u~,,=0. 

Here, h is the mesh width in the .Y direction and, strictly speaking, the artificial 
boundary is located at T + (h/2). 

The implementation of (3.5), on the other hand, involves three mesh lines: 

I  I  I  I  ---l 

0.0 0.2 0.4 0.6 0.8 1 
X 

FIG. 3. ( 0 ), condition (4Sa); ( i? ), condition (4.6); (0 ), long interval solution. 
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Figure 1 is a plot of the maximum error as a function of time and boundary con- 
dition for T = 3. Curves I, 2, 3 correspond to (4Sa), (4.5b), (4.5c), respectively, 
while 4 corresponds to (4.6). The error is calculated from the assumption that the 
long interval solution is exact. The spatial mesh widths are both 0.1, the time step is 
0.05 and D = 1. For short times we observe steady improvements as we progress 
from (4.5a)-(4.5c). For longer times there is, in this example, an improvement in 
the results using (4.5b). The two-mode condition (4.6) is seen to be consistently 
superior. This conclusion is more strongly supported by the results of taking r = 1, 
as depicted in Fig. 2. The success of the one-mode condition is significantly 
degraded, while that of (4.6) is not. A likely explanation is that, with r so small, the 
exponential decay of the second mode has not yet drastically decreased the mode’s 
amplitude. In fact, the results of using (4.6) with r = 1 appear to be better than 
those of (4.5) with T  = 3. Figures 3-5 show snapshots of cross sections of the 

0.0 0.2 0.4 0.6 0.8 1 

X 

FIG. 4. See Fig. 3. 
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solutions on the short interval. For all of them .r = -0.05. Depicted are the long 
interval solution (r = 15) along with those computed using (4Sa) and (4.6) with 
r = 1. A disturbance is seen to propagate through the boundary. As it does so, the 
results obtained using (4Sa) are seen to significantly deviate from the “exact” 
solution. Those obtained using (4.6), on the other hand, do not. 

Finally. in Fig. 6, we plot the error for solutions satisfying (4.5a), (4.5b), (4.5~) 
with D = 0.01 and T = 1. The errors, in general, are lower than in the D = 1 case. 
Furthermore, the success of (4.5~) is degraded in comparison to that of (4Sb). 

In conclusion, we have applied the method described in [4] to a simple problem 
and demonstrated its usefulness. At the price of solving an eigenvalue problem on 
the cross section, accurate results can be obtained with a significant decrease in the 
size of the computational domain. 

1 1 

0.0 0.2 0.4 0.6 0.8 1 

X 

FIG. 5. See Fig. 3. 
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,+-4&I , I I I 1 I I r 1-1 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7 

TIME 
FIGURE 6. 
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